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Abstract

Identifying higher orders of rationality is crucial to the understanding of strategic behavior.

Nonetheless, the identification of a subject’s actual order of rationality from observed behavior

in games remains highly elusive since games may significantly impact and hence invalidate the

identified order. To tackle this fundamental problem, we propose an axiomatic approach that

formalizes some of the key difficulties in an explicit manner. We then introduce a probability space

to study under which conditions the proposed axioms are necessary for efficient identification. The

axioms single out a new class of games, the e-ring games, that we use in a within subject experiment

to compare individuals’ classifications with the ones obtained in standard games previously used

in the literature. The results show that our theoretical approach is empirically feasible and a first

step towards a more reliable identification.
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1 Introduction

Many fields of economics are incorporating theories of bounded hierarchical reasoning to en-

hance the realism and robustness of their models, including macroeconomic policy (Angeletos

and Lian, 2016), mechanism design (Crawford, 2016; Börgers and Li, 2019; De Clippel, Saran
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and Serrano, 2019) and jury selection (Van der Linden, 2018), among many others. In macroe-

conomics, for instance, understanding the existence and bounds on agents’ higher-order beliefs

has attracted a lot of attention recently, given that they can lead to rather different economic

implications (Garćıa-Schmidt and Woodford, 2019; Coibion, Gorodnichenko, Kumar and Ryn-

gaert, 2021). Indeed, in any interaction between rational agents, optimal behavior depends

on the distribution of beliefs about whether others are rational, about whether others believe

others are rational, and so on. The empirical identification of the relevant reasoning bounds

is then crucial to accurately predict strategic behavior and optimally design institutions.

Among the multitude of identification methods employed, the central and most reliable

one has been to use the choices of experimental subjects in one or more games to identify

the highest possible order of reasoning consistent with their choices.1 Here, we rely on this

literature and focus on the revealed rationality method which is straightforward.2 First, an

analyst observes a subject’s choices in different roles in a game. Then the analyst computes

how many rounds k of iterated deletion of strictly dominated actions each of these choices

survives. Given this, the rationality (upper) bound the analyst estimates is equal to the lowest

k among the computed ones—no bound is estimated if every choice survives the full process of

iterated deletion of strictly dominated actions. That is, an action is categorized as R0 if it is

never a best response, as R1 if it is a best response to some belief, as R2 if it a best response

to the belief that the opponent is playing an R1 action, and so on. Players are assigned the

maximal level of higher-order rationality consistent with the choices made (Tan and Werlang,

1988; Lim and Xiong, 2016; Brandenburger, Danieli and Friendenberg, 2017).Crucially, given

that such choices are made in a particular game, the structure of the game can influence and

possibly bias the identification exercise.3

This paper provides a comprehensive analysis of the impact of the properties of a game on

the validity of the revealed rationality method. It highlights a tight theoretical dependency

between the statistical properties of the distribution of rationality bounds in a population, and

the effect of the structure of a game on the estimation. By adopting an axiomatic approach,

we discuss two natural properties on the payoff dependency of a game and identify conditions

on the distribution on the rationality bounds under which the two properties are necessary

for a valid estimation of the rationality bounds. The experimental evidence we find supports

1See Beard and Beil (1994); Schotter, Weigelt and Wilson (1994); Nagel (1995); Costa-Gomes, Crawford and
Broseta (2001); Van Huyck, Wildenthal and Battalio (2002); Costa-Gomes and Weizsacker (2008); Rey-Biel
(2009); Healy (2011); Costa-Gomes, Crawford and Iriberri (2013); Burchardi and Penczynski (2014); Georganas,
Healy and Weber (2015); Kneeland (2015) among many others. Part of this literature has complemented choice
based methods with other methodologies such as eye-tracking or search patterns recorded on computer interfaces.
As discussed in Kneeland (2015), these methods are not always fully reliable, they may be difficult to implement
in certain contexts and they may influence the way subjects choose in such games.

2Notice that we focus on rationality levels just for the importance rational beliefs have in the economic
literature. The whole analysis developed in the paper can be applied to any hierarchical model of thinking, like
k-levels for example.

3Alaoui and Penta (2016) already recognize the possibility that different payoffs can influence the depth of
reasoning. Here we complement their approach by saying that the structure of the game itself can influence the
reasoning process and its identification.
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the theoretical result. The main purpose of the exercise though, is to introduce a common

formal language to allow for a structured and explicit discussion of what are the desirable

properties of games (possibly beyond our own suggestions) and what they would imply for the

identification.

To start shaping the discussion, consider the following two-player bimatrix game where

the left matrix describes the payoffs of Player 1 (with actions A, B, C) and the right matrix

describes the payoff of Player 2 (with actions a, b, c).

Player 1

100 160 40

60 200 20

80 20 140A

B

C

a b c

Player 2

100 120 80

20 40 60

120 20 200a

b

c

A B C

For Player 2, action a is the only one surviving three rounds of iterated deletion of strictly

dominated actions and for Player 1, action C is the only one surviving four rounds of deletion.

As it is standard in the literature, a subject choosing actions C as player 1 would be classified as

reaching four orders of rationality. Similarly, a subject choosing action a as player 2 would be

classified as reaching no less than three orders of rationality. Nonetheless, a strategy consistent

with a certain order of rationality k may be chosen for a variety of reasons beyond reasoning

according to a particular order of rationality, raising the possibility of an identification mistake.

Given that we do not observe a subject’s reasoning process, we cannot exclude that choice C in

the role of player 1, for example, has been taken for other reasons such as choosing the strategy

labeled with the first letter of a subject’s surname. A possibility then would be to make the

same subject play across different games and see whether her behavior is consistent with the

initial classification. This would raise a major theoretical concern though. If the structure of

games influences the estimation, looking at behavior across differing games without taking this

channel into account could make the estimation invalid. Ideally, we would need to identify the

bounds in one externally valid game.

With this concern in mind, we propose two requirements for the structure of the games

employed in the estimation: (1) that behavior at each step of the hierarchy of beliefs is observed

within the same game, not via different games with differing depths to test for subject’s bounds,

and (2) that the structure imposed by (1) does not induce hierarchical thinking. Our first

requirement then is to assure that the structure of the game allows for the observation of

behavior at the different steps of the hierarchy of beliefs. In this way, the subject would be

classified as being of order k only if her behavior when playing in a role to test for level ` = k

is consistent with such a classification, and that when playing in a role to test for ` = 1, ` = 2,

all the way up to ` = k− 1, the choices are also all consistent with the classification k, at each

step of the hierarchy from 1 to k − 1, and, importantly, all within the same game.

A four-player ring game as used in Kneeland (2015) already satisfies this requirement:
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Player 1

180 120 60

0 80 160

80 200 120a

b

c

d e f

Player 2

0 160 180

200 80 140

140 180 40d

e

f

g h i

Player 3

0 160 160

160 20 180

200 140 80g

h

i

j k l

Player 4

60 100 80

80 120 100

120 160 140j

k

l

a b c

A defining feature of this game is that Player `’s payoffs depend only on her own choice and

on that of Player ` + 1, up to Player 4 whose payoffs depend on her own choice and on that

of Player 1. In addition, the game is dominance solvable in four steps: action j is strictly

dominant for Player 4, which implies that action g is the only one surviving two round of

deletion for Player 3, action e is the only one surviving three rounds for Player 2, and action a

is the only one surviving four rounds for Player 1. In consequence, because of the structure of

the game, the conclusion that a subject who chose a in the role of Player 1 has four orders of

rationality is falsified if the same subject is observed not to choose actions e, g and j when in

the roles of players 2, 3 and 4, respectively. The key idea is that a subject incapable of forming

beliefs of order higher than the first (R2), would eventually make a mistake when playing in

the role of players 1 and 2.

Notice however that games that allow to test for behavior at each step of the hierarchy might

themselves induce, or frame, subjects into thinking hierarchically. Subjects might be pushed

into making choices that are of higher-order k, or simply into thinking hierarchically, because

the structure of the games makes the iterated elimination steps, and hence the associated

hierarchy of beliefs, apparent, thereby making the identification flawed. For example, an R2

player playing as Player 2, given the game asks her to focus on Player 3 and 4’s behavior,

might be pushed into behaving as if R3. In fact, the game does not allow for an alternative

structure of higher-order beliefs than the one that makes the game dominance solvable. Her

strategic thinking cannot take paths different from the one creating dominance solvability. The

structure of the game maps one-to-one into the structure of higher-order beliefs that is needed

to solve the game. This motivates requirement (2) above, capturing a novel and intuitive

notion of framing, which we formally define in the paper.

In Section 2, we introduce a probabilistic setting that models the problem of estimating

rationality bounds. In fact, the importance of the proposed requirements cannot be grasped

without a formal definition of what is the objective of the estimation. We define as the

estimation error the difference between the rationality level estimated from observed behavior

and the true one generating such behavior, that is, the object of estimation. We show that the

error can be decomposed in two terms. One denotes the distortion that can arise due to not

observing the whole hierarchy of thinking of the subject, and so it is related to requirement

(1). The other one due to the inductive structure of payoff dependencies and hence related to

requirement (2).

In Section 3, we formalize requirements (1) and (2) as two separate properties of a given
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game. The first property, lower-order consistency, ensures that individual behavior can be

tested at each step of the hierarchy of beliefs, as in requirement (1) above. The second one,

absence of framing, formalizes requirement (2) above by imposing that the payoff structure of

the game should be such that each level of the hierarchy of beliefs has multiple payoff interde-

pendencies, and not just ones with lower levels. The property is formulated using the language

of graphs and guarantees that the payoff dependencies of the game do not correspond exactly

with the “natural” hierarchy of beliefs, thereby enabling players to contemplate alternative

hierarchies.4

Proposition 1 shows that under some clearly stated conditions regarding the probabilistic

framework defined above, lower-order consistency and absence of framing are necessary for

the estimator, that is, the game used to estimate the true rationality bound, to be efficient.

Any game not satisfying the two properties will have an estimation error that first order

stochastically dominates the one obtained from a game that does.

Thus, proving the existence of a class of games that satisfies lower-order consistency and

absence of framing becomes of primary importance for Proposition 1 not to be empty. It turns

out, as explained in Section 4, that the two properties greatly narrow down the set of available

games. We show that the simplest class of games satisfying both properties, and identifying

up to four levels of rationality—the empirically relevant ones—is a specification of a new class

of games we present here, the e-ring games, inspired by Kneeland (2015).5 An e-ring game

is a static game with private values, where the incompleteness of information is structured by

means of messages automatically sent back and forth between players as in the email game of

Rubinstein (1989). This information structure generates a natural one-to-one correspondence

between messages and higher-order beliefs.

In Section 5 we then test the validity of the two properties proposed by comparing behavior

across the most prominent classes of games used in the literature. Specifically, we identify levels

of rationality for each class of games and the new e-ring games. Even if not all the games we

consider have been used to identify levels of rationality, they are all considered standard games

to assess hierarchies of beliefs, which is the more general problem this paper addresses. We

focus on rationality for two main reasons. First, the absence of sophistication that is, level 0

is clearly specified and easily comparable across games. Second, the rationality assumption is

still the central one in economics and thus is of crucial importance to identify the distribution

of rationality bounds in the population to make better predictions as emphasized by Kneeland

(2015).

Our empirical contribution consists in testing experimentally the validity of lower-order

consistency and absence of framing. We carry out an experiment where all subjects play

games from each of the following four classes: eight of our e-ring games, eight ring games as

4In what follows, we denote by natural hierarchy of beliefs the one that corresponds to the order of elimination
of dominated strategies implied by the game.

5See Section 4 for a justification of why simplicity of the games may be a desirable property in empirical
applications.
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in Kneeland (2015), two simple two-player 4×4 dominance solvable games, and three different

versions of the beauty contest game presented in Nagel (1995).6 We thus compare behavior

across games which satisfy both properties (e-ring games), one of them (ring games) and

none of them (4×4 and the beauty contest games) allowing us to test whether satisfying the

properties is effective empirically in addressing the theoretical concerns raised above.

The experiment supports our theoretical approach. Indeed, we find evidence that the

properties proposed are relevant in the following sense: (1) games that violate lower-order

consistency, and hence do not test for consistent choices at steps 1 to k, tend to overestimate

the distribution of types for levels 2 or higher, compared to the ones that satisfy lower-order

consistency; (2) the ring games, which satisfy lower-order consistency but not absence of

framing, appear to frame subjects into higher hierarchical reasoning. In fact, we find that the

distribution of types for levels 2 or higher is biased towards the maximum level 4, as compared

to the e-ring games that satisfy both properties. Moreover, we find an order effect, whereby

subjects having played the ring games before the e-ring games tend to be identified with higher

orders in the e-ring games than when the e-ring games are played before the ring games.

Finally, Section 6 concludes. The Appendix contains the proofs of the mathematical results,

and the Online Appendix contains the distribution of oreders of rationality across the different

games, the English translation of the experimental instructions and the payoff matrices of all

games used in the experiment.

2 Framework

In this section we introduce the tools that allow for the formal analysis of the revealed ra-

tionality approach. Section 2.1 recalls standard game-theoretic preliminaries that relate the

iterated deletion of strictly dominated actions with higher-order beliefs in rationality. For

reasons related to simplicity of experimental implementation and discussed in a later section,

we allow for settings with incomplete information, but assume that the information structure

(the type space of the game) is exogenously specified by the analyst. Section 2.2 describes in

detail the estimation procedure, the revealed rationality method, standard in the literature.

Finally, for those readers concerned with deeper conceptual and formal issues, Section 2.3 pro-

vides a rigorous formalization of the object of estimation and the error in the estimation, and

introduces a notion of efficient estimation (based on first-order stochastic dominance). These

notions of error and efficiency will provide the main criterion to evaluate the validity of a given

6To be more specific, subjects play three versions of the beauty contest game where the average of all subjects’
responses is multiplied by 1/3 and 2/3 in the first two versions, and the third one consists in a p-beauty contest
game where the multiplying factor is an unspecified number p ∈ (0, 1), assumed to be commonly known, and
where subjects have to specify how they would play for any p in the interval. Notice also that, throughout the
paper, for the analysis of beauty contest games (and only for this class of games), we consider that at each
step it is weakly dominated actions that are eliminated, instead of strictly dominated ones. This reinforces
our message, since with strict domination, and the possibility of choosing nonintegers, the orders of rationality
explode: 0 for 100, and ∞ for every choice strictly smaller than 100.
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game as a tool for estimation.

2.1 Games and Finite-Order Rationalizability

A game is a list G := 〈Ti, Ai, ui, πi〉i∈I where I is a finite set of players, and, for each player i, Ti

is a finite set of types, Ai is a finite set of actions, ui :
∏
j∈I(Tj ×Aj)→ R is a utility function,

and πi : Ti → ∆(
∏
j 6=i Tj) is a belief function.7 As usual, T :=

∏
i∈I Ti and A :=

∏
i∈I Ai

denote the sets of type and action profiles, respectively, and, for each player i, T−i :=
∏
j 6=i Tj

and A−i :=
∏
j 6=iAj denote the sets of i’s opponents’ type and action profiles, respectively.

We say that game G has complete (resp. incomplete) information if T is a singleton (resp. not

a singleton).

The solution concept that captures the idea of iterated deletion of strictly dominated actions

is (interim correlated) rationalizability,8 and the link between these two notions constitutes

the conceptual foundation of the identification strategy in the next section. Before proceeding

formally, the iterated definition of rationalizability can be sketched as follows:9

• Action ai is 1st-order rationalizable for type ti if there exists a conjecture about i’s

opponents’ types and actions (a probability function on T−i × A−i) such that: (1) ai

maximizes the resulting expected utility, and (2) the conjecture is consistent with the

beliefs about T−i specified by πi(ti). This is equivalent to ai not being strictly dominated

for ti.

• For order k ≥ 2, action ai is kth-order rationalizable for type ti if there exists a conjecture

about i’s opponents’ types and actions such that: (1) ai maximizes the resulting expected

utility, (2) the conjecture is consistent with the beliefs about T−i specified by πi(ti), and

(3) the conjecture believes opponents to play (k − 1)th-order rationalizable actions (if a

pair (tj , aj) gets positive probability, then aj is (k−1)th-order rationalizable for tj). This

is equivalent to ai surviving k rounds of iterated deletion of strictly dominated actions

from ti’s perspective.

Given this, an action is rationalizable for type ti if it is kth-order rationalizable for ti, for

every k ≥ 1. Thus, formally, the set of rationalizable actions for type ti is defined as Ri(ti) :=⋂
k≥0Ri,k(ti), where the set of 0-th order rationalizable actions of type ti is simply Ri,0(ti) := Ai

and, for each k ≥ 1, the set of k-th order rationalizable actions of type ti is inductively defined

7Following usual conventions, for each finite set S, we let ∆(S) denote the set of probability measures on
the power set of S.

8The duality between the iterated deletion of strictly dominated actions and rationalizability is a rather
straightforward corollary of the classic Wald-Pearce Lemma. For details about the case of complete information,
see Pearce (1984) and Tan and Werlang (1988); for the case of incomplete information, Dekel, Fudenberg and
Morris (2007) and Battigalli, Di Tillio, Grillo and Penta (2011).

9It is important to stress that the evaluation is carried out at the interim level, that is, from the perspective
of each type ti. That a conjecture µi ∈ ∆(T−i × A−i) is consistent with ti simply means that its marginal on
T−i coincides with πi(ti).
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as follows:

Ri,k(ti) :=



ai ∈ Ai

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

There exists some µi ∈ ∆(T−i ×A−i) such that:

(1) ai ∈ arg max
a′i∈Ai

∑
t−i∈T−i

∑
a−i∈A−i

µi[(t−i, a−i)]ui((t−i, ti), (a−i, a
′
i))

(2) margT−i
µi = πi(ti)

(3) µi

(t−i, a−i) ∈ T−i ×A−i

∣∣∣∣∣∣ a−i ∈
∏
j 6=i

Rj,k−1(tj)


 = 1



.

Finally, let us introduce some terminology for expositional purposes. Throughout the

paper, we refer to the different roles within a game as player-types and, as usual, we say that a

game is dominance solvable if the iterated deletion of strictly dominated actions always yields

a unique prediction:

Definition 1 (Player-types, depth of a player-type, depth of a game). Let G be a game. Then,

a player-type in G is a pair x = (i, ti) where i ∈ I and ti ∈ Ti. Player-type x = (i, ti) has

depth k ≥ 1 if Ri,k−1(ti) ) Ri,k(ti) = Ri(ti), and that G has depth n ≥ 1 if n is the maximum

depth of the player-types in G. Let XG denote the set of player-types in G and, for each k ≥ 1,

let xk denote a player-type of depth k.

Definition 2 (Dominance solvable game). Let G be a game. Then, G is dominance solvable

if Ri(ti) is a singleton for every i ∈ I and every ti ∈ Ti.

2.2 Estimation of Rationality Bounds

We now formalize the estimation procedure briefly sketched in the beginning of the section.

The setting consists in a probability space (Ω,F , P ), where Ω is a population of subjects and

P (E) represents the probability of each event E ∈ F , not necessarily known to the analyst.

For obvious reasons, throughout the paper we exclusively focus on finite Ω and F = 2Ω.

The estimation procedure, commonly referred to in the literature as the revealed rationality

approach, can then be described in four steps:

1. The analyst fixes a game G.

2. Each subject ω ∈ Ω chooses an action in each role x ∈ XG . Thus, random variable

âx : Ω → Ai represents the choice of each subject in the role of player-type x = (i, ti).

The description of choices (âx)x∈xG is the choice-data, or database, observable to the

analyst.

3. If subject ω chooses an action âx(ω) ∈ Ri,k(ti)\Ri,k+1(ti) in the role of some player-type

x = (i, ti), the analyst interprets that the subject performs less than k + 1 rounds of
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iterated elimination of strictly dominated actions (see the discussion in Section 2.1) and

hence estimates k as the rationality bound in role x. If âx(ω) ∈ Ri(ti), no rationality

bound is estimated for role x. Thus, the random variable r̂x : Ω → N ∪ {0,∞} where,

for each ω ∈ Ω,

r̂x(ω) :=

 min {` ≥ 0 | âx(ω) /∈ Ri,`+1(ti)} if âx(ω) /∈ Ri(ti),

∞ otherwise,

represents the subjects’ estimated rationality bounds given choice-data âx.

4. Finally, the estimated rationality bound for each subject is equal to the minimum ratio-

nality bound estimated for the subject in each role x ∈ XG .10 Thus, random variable

r̂G : Ω→ N ∪ {0,∞} where, for each ω ∈ Ω,

r̂G(ω) :=

 min {r̂x(ω) |x ∈ XG } if âx(ω) /∈ Ri(ti) for some x ∈ XG ,

∞ otherwise,

represents the subjects’ estimated rationality bounds given choice data (âx)x∈XG .

These steps show how to a employ a game G to easily construct an estimator r̂G(ω) for

each subject ω. While intuitive, the method described is not explicit about the underlying

model of the subject’s behavior, and thus, lack a proper formalization of what the variable

r̂G is trying to estimate. In consequence, it is impossible to assess the latter’s validity as an

estimator. The following section tackles this issue.

2.3 Formalization of the Estimation Error

2.3.1 Rationality Orders and Lower Rationality Bound

The revealed rationality method detailed in the previous section relies on the as if assumption

that agents’ choices can be explained by a possibly finite-order version of rationalizability

entailing some coherency across player-types. Let us elaborate on this. First, for each subject

ω there exists some rx(ω) that describes the true rounds of deletion that ω performs in the role

of player-type x before choosing her action, âx(ω) (for simplicity, this number of rounds cannot

be higher than the depth of the player-type). Second, these values (rx(ω))x∈XG are coherent

in the following sense: A subject ω that performs k rounds in some role, also performs the

maximum possible rounds in the role of any player-type of depth lower than k, and at least k

rounds in the role of every player-type of depth higher than k. These two ideas are formalized,

in reverse order, in the following definition:

10With some abuse of notation, for the sake of computation of a minimum we treat the symbol representing
“no estimated bound,” ∞, as an element larger than any m ∈ N ∪ {0}.
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Definition 3 (List of Rationality Orders). Let (Ω,F , P ) be a probability space and G, a game.

Then:

(i) A list of random variables (rx)x∈XG is a list of rationality orders if, for any player-type

x of depth kx and any player-type x′ of depth higher than kx, the following hold for every

subject ω,

rx(ω) ∈ {0, . . . , kx}, and rx′(ω) ≥ kx ⇐⇒ rx(ω) = kx.

(ii) A list of rationality orders (rx)x∈XG is consistent with choice-data (âx)x∈XG if for any

player-type x = (i, ti), the following holds for every subject ω,

âx(ω) ∈ Ri,rx(ω)(ti).

Remark 1. For any game and choice-data (âx)x∈XG , there always exists at least one list of

rationality orders (rx)x∈XG consistent with it, namely the trivial one given by constants rx ≡ 0.

Typically, every choice-data (âx)x∈XG is consistent with multiple, different lists of rationality

orders.

Finally, we turn to the object of estimation of the paper. We assume the existence of a

random variable r : Ω→ N∪{0,∞} that represents the minimum number of rounds of deletion

that each subject is ensured to perform in the role of every player-type of every game. That

is, consider a comprehensive collection of lists of rationality orders {(rx)x∈G | G is a game} that

specifies the true number of rounds of deletion each subject would perform in the role of every

player-type of every game. Then, for each subject ω, each game G and each player-type x ∈ XG
with depth denoted by kx, it must be the case that:

• If kx ≤ r(ω), then subject ω performs exactly kx rounds of deletion in the role of x.

• If kx > r(ω), then subject ω performs at least r(ω) rounds of deletion in the role of

x, such that rx(ω) ≥ r(ω). The gap rx(ω) − r(ω) can be interpreted as representing

the impact of the context on ω’s reasoning process; in particular (as discussed below in

Sections 3.2 and 3.3), in the role of player-types of games in which the inductive structure

of dominance solvability is very transparent, rx(ω) could be much higher than in other

roles in which this structure is more opaque.

Thus, formally:

Definition 4 (Lower Rationality Bound). Let (Ω,F , P ) be a probability space. Then:

(i) A lower rationality bound is a random variable r : Ω→ N ∪ {0,∞}.

(ii) A lower rationality bound r is consistent with a comprehensive collection of lists of ra-

tionality orders {(rx)x∈G | G is a game} if for every subject ω, every game G and every
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player-type x ∈ XG with depth denoted by kx,

rx(ω) ≥ min {r(ω), kx} .

Remark 2. Similarly as above, every comprehensive collection of lists of rationality orders is

consistent with at least one lower rationality bound, namely, the constant r ≡ 0, and is typically

consistent with multiple, different lower rationality bounds. It follows that every choice-data

(âx)x∈XG is typically consistent with multiple lower rationality bounds, hence the identification

problem.

2.3.2 Estimation Error and Efficiency

Section 2.3.1 defined the object of estimation for the method described in Section 2.2, which

relies on the initial specification of some game G. As it is natural to expect, different games

G may lead to different distributions of errors in the estimation of the subjects’ true value of

r.11 Specifically, the random variable that formalizes the estimation error induced by a game

G is:

eG := |r̂G − r|.

This implies two things. First, if errors are independent across games, we would need to use

a large number of games to assure that the bias in the estimation disappears. Second, if errors

are not independent, for example, if they depend on the structure of the game as we argue here,

then it is not possible to achieve a reliable estimation by using different games and it is crucial

to use the same game as an estimator to keep things constant and be able to consider the error

as actual noise. Therefore, a natural prerequisite for the analyst is to choose a game G that

yields the minimum possible error according to some reasonable criterion of what minimum

means. In our analysis, we will rely on a very weak comparison standard, based on first-order

stochastic dominance, and we will say that game G procures a more efficient estimation than

game G′ if it ensures a lower probability of error (for some size of the error):

Definition 5 (Efficiency). Let (Ω,F , P ) be a probability space and let G,G′ be two games of

the same depth. Then:

(i) G is more efficient than G′ if, for every ε ≥ 0,

P (eG > ε) < P (eG′ > ε).

(ii) G is efficient if no other game of the same depth is more efficient than G.

11See Georganas, Healy and Weber (2015) and Burchardi and Penczynski (2014) for evidence in this direction.
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3 Two Properties for Efficient Estimation

The previous section equipped us with a formal notion of estimation error and with criteria to

assess the relative efficiency for estimation of different games. We are then ready to tackle the

first main question of the paper: how does the structure of a game relate to its efficiency

for estimation? Or, more specifically: is it possible to identify properties on the payoff-

dependencies of the game that are necessary for an efficient estimation?

To answer these questions, first, in Section 3.1 we borrow some terminology from graph

theory to define the graph structure of a game. Next, in Section 3.2, we build on this graph

structure to formalize two properties on the payoff-dependencies of a game, lower-order consis-

tency and absence of framing. Following the intuition sketched in the examples of Section 1, we

argue heuristically that these properties help reducing the probabilities of overestimating the

bounds. For those readers interested in the statistical foundation of these informal arguments,

Section 3.3 provides a rigorous formalization thereof, and presents the sufficient statistical con-

ditions for estimation, under which lower-order consistency and absence of framing are proved

to be necessary for it to be efficient. Specifically, we prove in Proposition 1 that, under the

sufficient statistical conditions, if a game satisfies both lower-order consistency and absence of

framing, then any game of the same depth that fails to satisfy either property is not efficient.

The question regarding the existence of a game (ideally, simple) that satisfies both prop-

erties is postponed to Section 4.

3.1 The Graph Structure of a Game

To better visualize the player-types and the payoff dependencies resulting from the payoff

structure of the game, we introduce some basic notions from the language of graphs. Player-

types are represented as nodes and payoff dependencies are represented as directed links. A

path in a given graph can be seen as mapping a hierarchy of beliefs.

Definition 6 (Graph of a Game). Let G be a game. The, the (directed) graph of G consists in

the pair (XG , LG), where the set of nodes is the set of player-types XG, and the set of directed

links LG comprises the pairs of nodes (x, x′) where the following two conditions hold:

(i) x has no strictly dominant action.

(ii) x’s expected payoff can depend on the actions of x′.

Definition 7 (Path). Let G be a game. Then, a path in graph (XG , LG) is a finite sequence

of nodes (x(1), x(2), . . . , x(m)) where the following two conditions hold:

(i) (x(`), x(`+1)) ∈ LG for every ` = 1, . . . ,m− 1.

(ii) All the nodes except possibly x(1) and x(m) are pairwise distinct.
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Thus, the graph of a game G summarizes the first-order payoff dependencies in the game.

The existence of a directed link from player-type x to player-type x′ ((x, x′) ∈ LG) represents

the fact that a rational type x should try to anticipate the choice by x′ when evaluating what

is optimal for her to do. If x has a strictly dominant action, this is of course not the case,

and neither is it if the choice of x′ never affects x’s expected payoff. Higher-order payoff

dependencies are captured by paths, which represent different possible belief-hierarchies that

the first player-type in the path (x(1)) can conceive when thinking strategically. We now

illustrate these concepts by revisiting the example sketched in Section 1:

Example 1 (Bimatrix Games vs. Ring Games). Consider again two-player bimatrix game:

Player 1

100 160 40

60 200 20

80 20 140A

B

C

a b c

Player 2

100 120 80

20 40 60

120 20 200a

b

c

A B C

Using Definition 1, players 1 and 2 have depths 4 and 3, respectively (action C survives four

rounds of iterated deletion for Player 1, and action a survives 3 rounds for Player 2), and

can thus be identified as player-types x4 and x3, respectively. Even if the game is dominance

solvable (with solution (C, a)), there are no player-types x1 and x2. Thus, since no player has

a dominant action, the graph structure of the game looks as follows:

x4 x3

As argued in the introduction, a subject capable of forming only first-order beliefs, playing as

Player 1 and choosing randomly between A and C, may have high chances of being classified

as if capable of forming higher-order beliefs by playing, for example, C.

This problem does not arise in the four-player ring games employed by Kneeland (2015):12

Player 1

180 120 60

0 80 160

80 200 120a

b

c

d e f

Player 2

0 160 180

200 80 140

140 180 40d

e

f

g h i

Player 3

0 160 160

160 20 180

200 140 80g

h

i

j k l

Player 4

60 100 80

80 120 100

120 160 140j

k

l

a b c

Notice that here, each player corresponds to a different player-type, Player 4 being player type

x1, Player 3 being x2, Player 2 being x3 and finally Player 1 being x4. This feature allows

for rejecting every possible bound 1, 2, 3 and 4 within the same ring-game, it is enough to

12Notice that these payoffs are the payoffs used in Kneeland (2015)’s G1 multiplied by 10.
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make a subject play in each role to test for each bound, ceteris paribus. A subject incapable

of forming beliefs of order higher than the first, for example, would eventually make a mistake

when playing in the role of player-types x3 or x4. Nevertheless, the very structure of the

game that corresponds to the iterative reasoning necessary to solve the game, might make the

hierarchy of beliefs more evident to a (rational) subject that would otherwise be incapable

of constructing one. The following graph representation of the game makes this issue more

directly apparent:

x4 x3 x2 x1

It is immediate to see that each player-type xk admits a unique path of length k − 1. �

The critiques to bimatrix and ring-rames outlined in the above discussion further under-

score the importance of putting conditions on the structure of the game in order to adequately

estimate subjects’ rationality bounds. Fortunately, they also offer an intuition on how to solve

this by changing this structure. We address this formally in the next section.

3.2 Two Properties: Lower-Order Consistency and Absence of Framing

3.2.1 Lower-Order Consistency

The example in the previous section shows that, while some games that can test whether a

bound k > 1 is falsified (because they include a player-type xk), can also test for all lower

bounds ` = 1, . . . , k− 1 (because they also include player-types x1, . . . , xk−1), others are more

limited and can only test for a subset of these bounds. The latter is the case for some classes of

games often used for identification of hierarchies of beliefs, such as bimatrix games or p-beauty

contest games. In such games, a subject who chooses randomly (not even rationally) is likely

to be wrongly interpreted as possessing a high rationality bound, as previously hinted.

At a conceptual level, a game that can test whether bound k is falsified and, when doing

so, can also test for bounds ` = 1, . . . , k − 1, makes it harder for subjects with a true bound

strictly below k to pass all these tests, and should not affect the behavior of a subject with

bound k or above. In fact, a subject whose rationality bound is k or above should be expected

to choose an `th-order rationalizable action in role x` for every ` = 1, . . . , k. By contrast, a

subject whose rationality bound is k′ < k should be expected to fail to choose an `th-order

rationalizable action in role x` for some ` = k′ + 1, . . . , k.

Consequently, the explicit verification of every step of the reasoning hierarchy imposes

additional challenges only to relatively unsophisticated subjects, but remains innocuous for

sophisticated ones.13 Implementing such a verification significantly reduces the risk of overes-

timating a subject’s rationality bound and, as a result, seems an obvious requirement if the

13Following the idea of finding a conservative bound (as in Kneeland, 2015) we are excluding the possibility
of trembling hand mistakes.
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identification is expected to have any external validity. Our first property can be stated as

follows:

Property 1 (Lower-Order Consistency). Game G is lower-order consistent if, for any k ≥ 2,

xk ∈ XG =⇒ xk−1 ∈ XG .

Lower-order consistency formalizes a property that has been implicitly used in the literature

on identification of rationality bounds (see Kneeland, 2015, or Lim and Xiong, 2016). In terms

of the graph of the game it implies that the structure of a game of depth n has to contain

all the nodes from x1 to xn. The following simple observation shows that, in addition to its

intuitive appeal, lower-order consistency also pins down a rather narrow class of games.

Lemma 1. Let G be a game with depth n that satisfies lower-order consistency. Then:

(i) G has at least n distinct player types, of which one has a strictly dominant action.

(ii) G is dominance solvable in exactly n rounds.

3.2.2 Absence of Framing

Mounting evidence from behavioral economics shows that individual behavior can be influ-

enced by the context in which decisions are taken. Applied to the identification of rationality

bounds, this suggests that the game employed may shape the actual reasoning process and

frame the subjects (i.e., influence their reasoning process) in a way that induces the form of

hierarchical thinking that is the object of the identification. Obviously, such a phenomenon

would compromise the external validity of the identification by giving rise to the following two

issues. First, subjects who would not normally engage in hierarchical thinking may be induced

to do so by the game. Second, subjects with some order of hierarchical thinking may be in-

duced to think in higher orders. To further illustrate this specific notion of framing, consider

the following two situations:

G1. A ring-like game with three players. The game is dominance solvable. Player 1’s payoffs

only depend on her own choices, Player 2’s payoffs depend on her choices and those of

Player 1, and Player 3’s payoffs depend on her own and those of Player 2. Furthermore,

for each k = 1, 2, 3, Player k has a unique kth-order rationalizable action, so that each

Player k can be identified with player type xk. Figure 1 illustrates the graph of game

G1. Notice that Player 3’s second-order belief has only one possible ordering that is

consistent with the payoff dependency of the game: her first-order belief is about Player

2’s choice and her second-order belief, about Player 2’s first-order belief about Player 1’s

choice.
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x3 x2 x1

Figure 1: Game G1.

G2. A variation of G1. Take G1 and introduce an additional action ā3 for Player 3 satisfying

the following features: (i) ā3 is strictly dominated for Player 3, (ii) Player 1’s payoffs

are independent of ā3, and (iii) if Player 3 chooses ā3 Player 2’s worst possible option

is to play her unique 2-nd order rational action of G1, independent of Player 1’s choice.

Obviously, the game is still dominance solvable, and, for each k = 1, 2, 3, Player k has

a unique kth-order rationalizable action and can thus be identified with player type xk.

However, the payoff dependency becomes slightly (though minimally) more intricate, as

depicted in Figure 2. Notice that now Player 3’s second-order belief has two possible

orderings that are consistent with the payoff dependencies represented in the graph: (1)

her first-order belief is about Player 2’s choice and the second-order one, about Player

2’s first-order belief about Player 1’s choice; (2) her first-order belief is about Player 2’s

choice and her second-order belief, about Player 2’s first-order belief about Player 3’s

choice.

x3 x2 x1

Figure 2: Game G2.

The comparison between the two scenarios is insightful. The multiplicity of orderings

that can be used to construct the belief hierarchy in G2 leaves it open to the subject which

hierarchy, if any, to follow. By contrast, the absence of multiplicity in the payoff dependency of

G1 frames subjects to reason hierarchically.14 Notice that this concern gains particular salience

if the game is assumed to satisfy lower-order consistency. In fact, the property requires the

existence of a different player type to test for each bound. This can influence the subjects’

reasoning process by exposing the belief hierarchy that represents the inductive structure of

the game (i.e., the exact ordering of iterated deletion that solves the game).15

14Of course, the distinction above deals with subjects that, unlike what the standard model of higher-order
reasoning admits, do not form joint beliefs about their opponents’ behavior and higher-order beliefs (i.e., Player
2 may have a joint belief about Players 1 and 3’s behavior in G2). However, this is immaterial for the argument:
ideally, we want to avoid that players having difficulties in forming these joint conjectures are categorized as if
they were able to form them.

15The intuition is well conveyed in Kneeland (2015), whose ring games provide a major step forward towards
the identification of rationality bounds by implicitly requiring lower-order consistency: “A particularly salient
effect of ring games (relative to standard normal form games) is that they may make iterative reasoning more
natural. This might happen if the ring game highlights the higher-order dependencies between the players or
if it induces backward induction reasoning because of the presentation of the game. Here we face a catch-22:
we must depart from typical games to achieve reliable choice based inference, but doing so unavoidably raises
concerns of this sort.”
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To minimize this notion of framing, a game used to identify higher orders of rationality

should allow each player type to be able to construct belief hierarchies about other players

types’ behavior that are alternative to the one associated with the inductive structure of the

game. This can be achieved by enriching the payoff dependencies so that, for player types

that test for bound 2 and above, payoff dependencies do not only refer to player types that

test for lower bounds. Given this, it is easy to formalize a minimum requirement of the payoff

dependencies of the game which prevents making the inductive structure of the game from

being immediately apparent.

Property 2 (Absence of Framing). A lower-order consistent game G with depth n ≥ 2 is

framing-free if there exist:

(i) For any k = 2, . . . , n, two distinct paths of length k − 1 that start at xk.

(ii) For any k = 3, . . . , n, two distinct paths of length k − 2 that start at xk.

Let us provide some further intuition for the property. First, requiring G to be lower-order

consistent ensures that, if the game contains a player type xk, then it also contains player

types x1, . . . , xk−1. Second, condition (i) says that a player type xk is considered to be framed

if no distinct paths of length k − 1 that start at xk exist. The interpretation is simple and

visually intuitive in Figure 1. There, the payoff dependencies allow for a single path of length

1 departing from x2, making it immediately apparent for x2 that it is x1 the type whose choice

she cares about. This implies that a subject not capable of forming a hierarchy of beliefs might

be helped by the structure of the game to behave as if she could. By contrast, the presence of

two distinct paths departing from x2 in the graph in Figure 2, one towards a player who has

no strictly dominant action, makes the inductive structure of the game less apparent.

The same intuition, visually represented in the left graph in Figure 3, where x4 is interpreted

as being partially framed, explains why we also require condition (i) for player types with depth

above 2. Here, the fact that there are not two distinct strategic paths of length 3 departing

from x4 results in the inductive structure of the game being easily recognizable for x4, if she

excludes herself from the belief hierarchy.

x4 x3 x2 x1 x4 x3 x2 x1

Figure 3: Games with some framing.

In addition to condition (i), condition (ii) is also required for types of depth 3 and higher,

in order to avoid situations such as the one in the right graph in Figure 3, where, again x4

would be considered to be partially framed. The reason is that the fact that there is a unique

path of length 2 that departs from x4 results in the necessity of her first-order beliefs only

pertaining to player type x3 being immediately apparent to x4. This implies that a subject
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that can form up to second order beliefs, when playing as player type x4, would immediately

see the inductive structure of the game, hence behaving as if capable of forming third order

beliefs. Finally, Figure 4 displays two different games in which no player type is framed. In

the next section, we show that the game on the left is a particular specification of the new

class of games to be introduced.

x4 x3 x2 x1 x3 x4 x2 x1

Figure 4: Games that are framing-free.

3.3 Efficiency Result

We now sketch a simple, formal foundation for the heuristic arguments given above regarding

the convenience of lower-order consistency and absence of framing in providing a more effi-

cient estimation of the rationality bounds. Specifically, we find sufficient conditions on the

probabilistic model discussed in Section 2.2 under which, both lower-order consistency and

absence of framing are necessary for the estimation to be efficient. In Section 3.3.1 we show

how to naturally decompose the estimation error, first in role-dependent components, and then

in two parts: one that captures distortions due to purely observational issues, and one that

captures distortions due to framing effects –as the ones discussed in the previous section. In

Section 3.3.2 we introduce the statistical conditions (which rely on this decomposition) that,

as shown in Proposition 1 in Section 3.3.3, guarantee the necessity of lower-order consistency

and absence of framing for an efficient estimation of the rationality bounds.

3.3.1 Decomposition of the Estimation Error

In Section 2.3.2 we defined the estimation error associated to game G as:

eG = |r̂G − r|.

Now, if we suppose that the subjects’ true rationality orders in game G are defined by the list

(rx)x∈G , we can easily rewrite the the estimation error as:

eG =

∣∣∣∣min
x∈XG

r̂x − r
∣∣∣∣ =

∣∣∣∣min
x∈XG

(r̂x − r)
∣∣∣∣ =

∣∣∣∣min
x∈XG

((r̂x − rx) + (rx − r))
∣∣∣∣ =

∣∣∣∣min
x∈XG

(êx + ēx)

∣∣∣∣ ,
where, for each player-type x ∈ XG , we have the following two kind of errors:

• êx := r̂x− rx denotes the distortion in the estimation due to purely observational issues,

and related to the fact that the sets of kth-order rationalizable structures are mono-

tonically (weakly) decreasing on k, and can therefore lead to overestimations of the
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rationality bound (as discussed in Section 3.2.1).

• ēx := rx − r denotes the distortion in the estimation due to framing effects, related to

the fact that the inductive structure of the payoff dependencies could be very trans-

parent in some games hence inducing the subject to reason iteratively (as discussed in

Section 3.2.2).

3.3.2 Statistical Conditions

Thus far we have not imposed any statistical structure on the probability space (Ω,F , P ).

Notice however, that the experimental literature implicitly assumes the existence of such a

space, given that observations are usually considered to be random variables with particular

error structures, e.g., logit or uniform. Here, we go one step further and openly model the

probability space. In this way, we are able to propose four conditions on (Ω,F , P ) under which

lower-order consistency and absence of framing become necessary for efficient estimation.

The first condition is a generic richness property that simply requires all the mutually

consistent combinations of values of the errors and of the lower rationality bound to have

nonnull probability.16

Condition 1 (Richness condition). Let G be a game and let k be in {0, 1, . . . , n}. Then, for

any player-type x of depth kx > k, every ε̄ ∈ {0, 1, . . . , kx − k − 1} and every ε̂ ∈ {0, . . . , kx −
k − 1− ε̄} ∪ {∞},

P (êx = ε̂, ēx = ε̄, r = k) > 0.

The second condition requires that, conditional on the number of iterations performed in

the role of a player-type of the highest depth, the error due to purely observational issues and

the error due to framing effects are independent.

Condition 2 (Conditional independence of the errors). Let G be a game and let k be in

{0, 1, . . . , n}. Then, for any two player-types x and x′, every ε̂ ≥ 0 and every ε̄ ≥ 0,

P (êx = ε̂, ēx′ = ε̄ | rxn = k) = P (êx = ε̂ | rxn = k)P (ēx′ = ε̄ | rxn = k).

The third condition puts structure on the distributions of the errors due to purely observa-

tional issues. Loosely speaking, the first two parts of the condition formalize the assumption

that these errors are, to some extent, of noisy nature; that is, independent across different

player-types and equally distributed across different games.17 More specifically, part (i) of

16In the condition, notice that, if rxn(ω) = k and player-type x has depth kx > k, then we necessarily have
that rx(ω) = k (part (ii) of Definition 3). Hence, the possible values that êx(ω) can take are, by definition,
restricted to {0, 1, . . . , kx − k − 1} ∪ {∞}.

17Admittedly, the plausibility of these requirements hinges on the similarity of the problems that the different
player-types of different games face. For this reason, the main games in our experiment share a common
structure: for each player-type of depth k, one strictly dominated action, two actions that survive k− 1 rounds,
and one action that survives ≥ k rounds.
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Condition 3 requires that, conditional on the true number of iterations performed in the role

of the player-type of the highest depth, rxn , the errors due to observational issues are inde-

pendent from each other for player-types of depth higher than rxn . Part (ii) of Condition 3

requires that, for two games of the same depth and two player-types x and x′ of the same

depth, each from a different game, the distributions of êx conditional on rx and the distri-

bution of ê′x′ conditional on r′x′ are identical. It is important to interpret these two parts as

properties on a distribution, not as requirements on the behavior of each individual subject.

They do not require the choice of a given subject to be independent of the choice of the same

individual in the role of a different player-type, but instead, that this independence holds in

the distribution when considered as a property of the whole population faced with the given

set of games. Finally, part (iii) of Condition 3 requires that the probability of êx being higher

than a given level, conditional on rxn , is increasing on rxn . To get a better intuition, notice

that the higher rxn is, the smaller is the set of values that êx can take;18 thus, what part (iii)

of Condition 3 requires is that, as rxn increases, the mass of probability that corresponds to

the values that have disappeared from the new support, concentrate more on the higher values

than on the low values in the new support.

Condition 3 (Structure of the errors due to purely observational issues). Let G and G′ be two

games of depth n, and let k be in {0, 1, . . . , n}. Then, the following three hold:

(i) For every ε̂ ≥ 0,

P

 ⋂
x∈XG :kx>k

[êx ≥ ε̂]

∣∣∣∣∣∣ rxn = k

 =
∏

x∈XG :kx>k

P (êx ≥ ε̂ | rxn = k).

(ii) For any two player-types x ∈ XG and x′ ∈ XG′ of depth higher than k, and every ε̂ ≥ 0,

P (êx = ε̂ | rx = k) = P (ê′x′ = ε̂ | r′x′ = k).

(iii) If k < n, for any player-type x ∈ XG of depth higher than k, and every ε̂ ≥ 0,

P (êx > ε̂ | rx = k) < P (ê′x′ > ε̂ | r′x′ = k + 1).

The fourth condition puts structure on the distributions of the errors for the different

player-types due to having extra payoff dependencies or not, besides the ones associated to the

natural hierarchy of beliefs. Before formally presenting them let us build some intuition first.

Say that a player-type of depth xk is trivial if it only has one outwards path of length k − 1

or, if k ≥ 3, only has one outwards path of length k− 2. Call it nontrivial otherwise. Then, in

principle, a trivial player-type x is one whose behavior is particularly simple to reason about

18For instance, if x is of depth 6 and rxn = 3, then the set of possible values that êx can take is {0, 1, 2,∞}
whereas if rxn = 4, this set is {0, 1,∞}.

20



for another player-type x′ of higher depth. In this context, Condition 4 relates the presence

of trivial player-types with the arousal of framing into hierarchical thinking. To provide some

intuition on the conditions, suppose first that a subject ω with r(ω) = 3 is choosing in the role

of x4 (a player-type of depth 4). Then, whether ω performs 3 or 4 iterations in this role (i.e.,

rx(ω) = 3 and rx(ω) = 4, respectively) will be affected by the payoff-dependencies of x2 (the

player-type of depth 2), because, as r(ω) = 3, ω already identifies the dominated actions of x2

but may not necessarily identify the actions that survive 2 rounds. In this context, part (i) of

Condition 4 requires that, if x2 only had one outwards link (her payoff only depends on her

choice and that of x1), then it would be more likely that ω performed the last iteration (and

thus rx(ω) = 4) than if x2 had richer payoff-dependencies. Similarly, if r(ω) = 2, then the

likelihood of rx(ω) = 2 and rx(ω) = 3 would be affected by how rich the payoff-dependencies

of x3 were. And similarly for lower values of r(ω). Part (ii) of Condition 4 states that, once

trivial player-types are absent, error distributions are equal.

Condition 4 (Structure of the errors due to framing effects). Let G and G′ be two games of

depth n, and let k be in {1, 2 . . . , n− 1}. Then, the following two hold:

(i) If there exist two player-types x ∈ XG and x′ ∈ XG′ of depth n + 1 − k such that x is

nontrivial and x′ is trivial, then, for every ε̄ > 0,

P (ēxn = ε̄ | r = k) < P (ē′x′n = ε̄ | r = k).

(ii) If every player-type x ∈ XG and x′ ∈ XG′ with depth in {2, . . . , n+ 1− k} is nontrivial,

then, for every ε̄ ≥ 0,

P (ēxn = ε̄ | r = k) = P (ē′x′n = ε̄ | r = k).

3.3.3 Result

Our first result establishes that, if the probability space satisfies the four conditions of the

previous section, then lower-order consistency and absence of framing are necessary conditions

for efficient estimation:

Proposition 1. Let (Ω,F , P ) be a probability space that satisfies conditions 1, 2, 3 and 4,

and let G and G′ be two games of the same depth. Then, if G satisfies lower-order consistency

and absence of framing and G′ does not, G is more efficient than G′.

It is important to notice that these results do not require knowledge of the probability

measure P in the probability space: as long as the four conditions are considered to hold, a

game satisfying lower-order consistency and absence of framing will do a better job (at least,

according to the efficiency order we are considering), than any game that fails to satisfy either

property. Now, it remains to be seen whether there exist games that satisfy both properties
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and, in case of a positive answer, whether such games can be simple enough to be implemented

in a lab. The following section analyzes these issues.

4 E-Ring Games and Efficient Estimation of Rationality Bounds

After having motivated the properties of lower-order consistency and absence of framing as

contributing towards a more efficient estimation of the rationality bounds, we now study what

they imply jointly in terms of actual games to be played in the lab. In Section 4.1 we introduce

the e-ring games, a class of games combining features of both Rubinstein’s (1989) email games

and Kneeland’s (2015) ring games. Then, in Section 4.2 we prove that, within the class of

games of depth 4, and attending to certain natural simplicity criteria, dominance solvable e-ring

games of depth 4 exactly characterize the class of games satisfying lower-order consistency and

absence of framing. Hence, among the games of depth 4 and under the statistical conditions

of Section 3.3, the e-ring games stand as the simplest games delivering an efficient estimation

of the rationality bounds.

4.1 E-Ring Games

An e-ring game is a two-player static game with private values in which players automatically

receive a finite number of messages, and where each player’s own payoffs depend on the number

of messages that the player received as well as on the actions chosen by both players. Nature

chooses the number of messages received by each player, whereby player 2 either has the same

number of messages as player 1 or she has one more message than player 1.

The following example illustrates an e-ring game with three actions that is similar to the

ones used in our experiments. It also shows that such specification can be used to identify

bounds up to 3 and bound at least 4.

Example 2 (E-Ring Game of Depth 4). There are two players, Player 1 (the sender) who

chooses rows, and Player 2 (the receiver) who chooses columns. Each player either gets 1 or 2

messages, whereby Player 2 either has the same number or one more message than Player 1.

Each player is initially informed about the number of messages she receives, and the payoffs

depend only on the number of messages a player receives as well as on the actions chosen by

both players. To figure out the payoffs of the opponent, players can compute the number of

messages received by the opponent as follows. Player 1 with 1 message knows her opponent has

either 1 or 2 messages, each event with equal probability (p1 = 1/2); Player 1 with 2 messages

knows for sure the other player also has 2 messages. Similarly, Player 2 with 1 message knows

for sure that her opponent also has 1 message; while Player 2 with 2 messages knows her

opponent has either 1 or 2 messages, each event with equal probability (p2 = 1/2).

Consider the following payoff matrices, where, respectively, A,B,C are the actions of

Player 1 and a, b, c are the actions of Player 2, and where u1(t1) are the payoffs of Player 1

22



when she receives t1 messages, and u2(t2) the payoffs of Player 2 when she receives t2 messages.

Player 1 (u1(t1)) Player 2 (u2(t2))

120 100 180

200 120 140

80 60 80A

B

C

a b c

180 80 140

160 140 100

80 40 60a

b

c

A B C

160 120 180

80 20 20

60 80 40A

B

C

a b c

100 140 200

180 160 120

20 40 80a

b

c

A B C

t1 = 2

t1 = 1

t2 = 2

t2 = 1

The above payoff structure has a unique (interim correlated) rationalizable action for each

player and number of messages received. Player 1 with 2 messages (payoff matrix u1(2)) has

a strictly dominant action C. Player 2 with 2 messages (payoff matrix u2(2)), seeing this and

the fact that Player 1 with 1 message (payoff matrix u1(1)) has A as strictly dominated action,

(and knowing that she faces Player 1 with t1 = 1, t1 = 2 with equal probability), has a unique

strict best-reply c. Player 1 with 1 message, given the above and seeing that Player 2 with 1

message has a as a strictly dominated action (and again knowing that she faces Player 2 with

t2 = 1, t2 = 2 with equal probability) has a unique strict best-reply C. Finally, Player 2 with

1 message (payoff matrix u2(1)), knowing that for sure she faces Player 1 with 1 message and

that she plays C as unique best-reply, also has a unique strict best-reply c. Thus ((C,C); (c, c))

is the unique rationalizable strategy profile.

Now, we show that this particular game can estimate bounds up to 3 (and bound at least

4). According to Definition 1 we have the set of player-types XG = {(1, 1), (1, 2), (2, 1), (2, 2)}
so that the payoff matrix that corresponds to each player-type (i, ti) is ui(ti). Moreover, notice

that, again, according to Definition 1, we have that x1 = (1, 2), x2 = (2, 2), x3 = (1, 1), and

x4 = (2, 1), where each player-type xk is the unique one used to test whether rationality bound

k is falsified. This is easy to see: C is the only first-order rationalizable action for (1, 2), c is the

only 2nd-order rationalizable action for (2, 2), C is the only 3rd-order rationalizable action for

(1, 1) and c is the only 4th-order rationalizable action for (2, 1). Thus the revealed rationality

method yields the classification given in Table 1.

x1 x2 x3 x4 r̂G

C c C c ∞
C c C b 3
C c B b, c 2
C b B,C b, c 1

Table 1: Choice-vectors and estimated rationality bounds.
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In addition, the estimated bound for a subject playing a dominated action would be 0 (A or

B in the case of x1, and A or a in the case of the remaining player-types).19 �

The next definition formalizes the general class of e-ring games.

Definition 8 (E-Ring Game). An e-ring game of depth n (even) is a list G = 〈Ti, Ai, ui, πi〉i=1,2,

where, for each player i:

1. Ti = {1, 2, . . . , n/2} is a set of types.

2. Ai is a finite set of actions.

3. ui : Ti ×A1 ×A2 → R is a payoff function.

4. πi : Ti → ∆(T−i) is a belief-map such that, for fixed p1, p2 ∈ (0, 1),

π1(t1)[t2] =

{
p1 if t2 = t1,

1− p1 if t2 = t1 + 1,
π2(t2)[t1] =

{
p2 if t1 = t2 − 1,

1− p2 if t1 = t2,

for 1 ≤ t1 < k/2 and 1 < t2 ≤ n/2, and otherwise π1(n/2)[n/2] = 1 and π2(1)[1] = 1.

Notice that the type structure of the e-ring games builds on the communication structure

of the email games of Rubinstein (1989) with two important differences. First, in the email

games players can receive any arbitrary number of messages, and, second, they face the same

2 × 2 payoff matrices for essentially any number of messages received. To further clarify the

relation between types in an e-ring game, consider player i who has received k messages. By

Definition 8, this player’s type is ti = k and the payoff she obtains from action profile (a1, a2)

is given by ui(k, a1, a2). However, Player i is uncertain about the number of messages received

by the other player and hence also about the latter’s type and payoff function. In particular,

Player 1 of type t1 = k knows that, with probability p1, Player 2 is of type t2 = k and that,

with probability 1 − p1, Player 2 is of type t2 = k + 1 (with the exception of type t1 = n/2,

who knows that Player 2 is of type t2 = n/2 for sure). Similarly, Player 2 of type t2 = k knows

that, with probability p2, Player 1 is of type t1 = k − 1 and that, with probability 1 − p2,

Player 1 is of type t1 = k (with the exception of type t2 = 1, who knows that Player 1 is of

type t1 = 1 for sure).

4.2 Characterization Result

The conceptual appeal of lower-order consistency and absence of framing for the estimation

of rationality bounds has been discussed in Section 3.2, and the conditions for its mathemat-

ical necessity, in Section 3.3. We now turn to the question of the implementation of both

19In this example, we explain our identification strategy as if subjects switched roles. In the experiment
detailed in Section 5, we achieve this by reassigning Player 1’s matrix with 2 messages to Player 2 with 1
message while reallocating the other matrices to maintain the dominance solvability structure.
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axioms, and, more specifically, to the characterization of games satisfying the axioms and the

complexity they entail.

Besides our two axioms, and attending to simplicity of implementability, we will focus

on the characterization of games satisfying two additional requirements. First, we restrict

our attention to games of depth 4, since from the experimental literature the first four levels

seem to be the empirically relevant ones (e.g., Arad and Rubinstein, 2012). Second, we order

games following a simplicity criterion according to which, all things equal, we favor the lowest

possible number of players, player-types, actions per player and directed links. This simplicity

criterion may be important for resources-saving empirical implementations but also to minimize

the complexity of the game to avoid as much as possible artificially generating noise in the

data.

The next result shows that, within the class of games of depth 4, the games satisfying

lower-order consistency and absence of framing and satisfying the aforementioned simplicity

criteria are the dominance solvable e-ring games with depth 4 and 2 actions per player.

Proposition 2. Let G be a game. Then, G is simplest within the class of games of depth 4

and satisfies lower-order consistency and absence of framing if and only if G is a dominance

solvable e-ring game of depth 4 with two actions per player.

Combining this with Proposition 1 and assuming Conditions 1, 2, 3 and 4 further singles

out the dominance solvable e-ring games with two actions as the simplest games yielding an

efficient estimation of the rationality bounds. The next section shows how these games were

implemented in the experiment to test the effectiveness of the proposed properties.

5 Experiment

5.1 Experimental Design

The experiment consisted of four tasks and a non-incentivized questionnaire. In the first task,

subjects chose an action in a pair of standard two player 4×4 dominance solvable games. In

each of the subsequent two tasks, subjects chose actions in a set of eight ring games and eight

e-ring games. The set of eight ring games and the set of eight e-ring games were presented in

different random orders to each of the subjects, respectively. In the final task, subjects were

presented with the beauty contest game as in Nagel (1995) and had to choose a number for two

different versions of the game (one where the average of all players’ numbers was multiplied

by 2/3 to determine the winner, and another where the average was multiplied by 1/3) and a

more general version, where subjects were asked to explain a general strategy about how they

would choose for any (unspecified) commonly known number p between 0 and 1 (both not

included) that could be announced publicly in the beauty contest game. For this final task,

subjects were told that they could either choose a number, a mathematical formula or provide

any text which would show their reasoning process.
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Our experimental design intends to compare the distribution of orders of rationality iden-

tified by the e-ring games with the ones identified by benchmark games used in the literature

for the identification of hierarchies of beliefs (ring games, dominance solvable games such as

our 4×4 games and the p-beauty contest games). We chose these classes of games because

they allow us to test the empirical validity of the two axioms proposed in Section 3, since

the 4×4 dominance solvable games and the beauty contest games do not satisfy lower-order

consistency, while the ring games satisfy lower-order consistency but not absence of framing.

In both the e-ring and the ring games, each subject can play four possible actions in each

of the eight games for a total of 65,536 possible action profiles.20 In both the e-ring and the

ring games, there are 729 action profiles that do not violate any of the predicted action profiles

of types R1-R4, independently of subjects’ role following the revealed rationality approach.

Thus, it is unlikely for a subject to be classified as a rational type by random chance since

there is 1.2% probability of being identified as R1-R4 while playing randomly in either game.21

We designed eight treatments, differing in three aspects: (i) whether the ring game was

played before or after the e-ring game; (ii) whether the payoff matrices used in the ring and

e-ring games remained constant (non-permuted) across decisions, while either varying the

player’s position (ring game) or the number of messages received (e-ring game), or whether

the actions in such matrices were reshuffled (permuted); and (iii) whether the 1/3 version of

the beauty contest game was played before or after the 2/3 one. A translation of the original

Spanish instructions as well as the actual games used for each of the tasks can be found in the

Online Appendix.

5.2 Laboratory Implementation

The experiment was conducted at the Engineering School of Universidad Carlos III in Madrid

(Spain) in April, 2018. This particular school was selected due to being one of the most

prestigious universities in the country. Accordingly, the average grade in the entrance to

university exam of our pool of participants is 12 (out of 14 possible points). The importance

of this decision is twofold. First, very sophisticated subjects should be less influenced by the

structure of the game in their reasoning process, hence making the test of the axioms stricter.

20In the implementation we decided to have 4 actions for each player type in both classes of games for the
following two reasons. The first one is that with only two actions per player type in the e-ring games, the
unique action of level l for each player type xl would be risk dominant, thus bringing new potential concerns
in the identification. This means that at least three actions were needed. The second one is that, to avoid
assuming that the subjects maximize expected utility in the e-ring games, we needed to have strict dominance
to test for each bound, hence making it necessary to have at least one dominated action for each player type.
However, to ensure comparability of the choice data, given that the ring games have three undominated actions
for each player type, we added a strictly dominated action to the ring games and an undominated to e-ring
games. Thus, all games have 4 actions. It is particularly important to control for risk preferences given that
e-ring games are the only ones where they might play a role given the incompleteness of information. That is
why we have constructed the games in such a way that the dominance structure is the same no matter of the
individuals’ risk attitudes.

21Of the 729 possible rational action profiles, 648 would be identified as R1 (88.9%), 72 as R2 (9.9%), 8 as
R3 (1.1%) and 1 as R4 (0.1%).

26



Second, if such a particular pool of subjects showed bounds in their hierarchical reasoning,

then this would cast a stronger doubt on the underlying assumption in economic modeling

that individuals are unbounded in their reasoning process.

All undergraduate engineering students from the school were sent an email message an-

nouncing two experimental sessions and they were confirmed on a first-come first-served basis.

229 students participated. No subject participated in more than one session. Subjects made

all decisions using a booklet including all instructions stapled in the order determined by their

treatment assignment and the randomization of the order of eight ring and e-ring games, the

answer sheets and a post-experimental questionnaire. Sessions were closely monitored resem-

bling exam-like conditions in order to ensure independence across participants’ responses and

compliance with our instructions. And third, they were clever but had no previous knowledge

of Game Theory, which could influence their reasoning process.

Instructions were read aloud and included examples of the payoff consequences of several

actions in each of the tasks. Participants answered a demanding comprehension test prior to

each of the tasks. A majority of subjects (71%) answered all 13 questions correctly. We made

sure that all remaining issues were clarified before proceeding to the actual experiment.22

Participants received no feedback, neither after playing each of the games nor after finishing

each of the tasks, and were monitored such that they would not move from one task to another

unless instructed. Once all four tasks were completed, subjects filled up a questionnaire, which

included non-incentivized questions about the reasoning process used to choose in each of the

tasks, as well as questions about knowledge of game theory and demographics. Subjects were

given 4 minutes to complete the first task, 20 minutes each for the second and third tasks, and

9 minutes for the final task. The two experimental sessions lasted around 110 minutes each.

We provided high monetary incentives for 10 randomly selected participants, instead of

paying all subjects a lower amount of money.23 One of the twenty decisions was randomly

selected for payment at the end of the experiment for each of these 10 participants. Subjects

were randomly and anonymously matched into groups of 2-players (e-ring and 4×4 games), 4-

players (ring games) or all players (p-BC games) depending on the game selected, and were paid

based on their choice and the choices of their group members in the selected game. Subjects

received e100 plus the euro value of their payoff in the selected game. Average payments for

these selected participants were e174.

5.3 Experimental Results

We start with the revealed rationality approach, whereby the choices made by the individual

in a given class of games determine an upper bound for the level of higher-order rationality

22Although our analysis uses the full sample of participants, results are robust to using the subsample of
subjects who made no mistakes in the tests.

23See Alaoui and Penta (2021) for a theoretical justification of this design choice that should give higher
incentives to achieve higher levels in the hierarchy of beliefs.
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of that individual. The key question we address is whether that upper bound is also a good

lower bound for the level of rationality of the individual. We claim that both Property 1 and

Property 2, each contribute in different ways towards reducing the gap between the upper and

the lower bound. Next we provide some evidence in favor of such a claim.

Experimental Evidence for Property 1 (Lower-Order Consistency). Games that

satisfy lower-order consistency and identify an individual as being of level k ≥ 2 ensure that

such individual makes choices that are consistent with level k also in decisions that test for

levels ` = 1, . . . , k − 1 within the same game. In other words, games satisfying lower-order

consistency allow for the application of the revealed rationality principle at each step of the

hierarchy of beliefs from level 1 up to level k within the same game. Thus, when testing for

lower-order consistency, we draw a distinction between R0-R1 levels on one hand and R2-

R3-R4 levels on the other, and do so for two reasons: one because those subjects that get

identified as being R0 or R1 by any one of the games in our experiment are likely to have

been reliably identified as such; two, the misclassification of a subject, from being identified as

not having strictly speaking higher-order rationality (R0-R1) to being identified as one with

strictly speaking higher-order rationality (R2-R3-R4) is particularly pertinent.

To check that the requirement has bite, we compare the classification of individuals’ levels

of rationality obtained using the e-ring and ring games, which do satisfy lower-order consistency

(LOC games), with the levels obtained with the 4×4 and the beauty contest games that do not

satisfy lower-order consistency (non-LOC games). We distinguish between subjects that reveal

not to have higher-order beliefs in rationality (R0-R1) from those who do (R2-R3-R4). To see

that the 4×4 and the two beauty contest games are not as good at identifying higher-order

levels R2-R3-R4, we look at the following two tests.

Test 1.1. First, we take the identification of subjects as being R0 or R1 by LOC games

as valid, and look at how many of these subjects are misclassified as being R2, R3, or R4

by the non-LOC games. Second, we take the identification of subjects as being R0 or R1 by

non-LOC games as valid, and look at how many of these subjects are misclassified as being

R2, R3, or R4 by the LOC games.

Consider first all subjects that are identified as being of level R0 or R1 in the e-ring and

ring games (52 subjects). The share of these subjects that are also identified as being of levels

R2, R3 or R4 in the 4×4 and in the two beauty contest games are as follows (where the

numbers in parenthesis give the shares out of all the 73 subjects that have been revealed as

being of level at most R0 or R1 at least twice in the e-ring and ring games):

4× 4: 63.5% (57.5%) 2/3-BC: 84.6% (89.0%) 1/3-BC: 38.5%(43.8%).

Next, for comparison, consider all subjects that are identified as being of level R0 or R1 in at

least two games of the 4×4 and the two beauty contest games (48 subjects).24 We calculate

24We do not consider all three games because the number of subjects satisfying this very strict condition is
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the share of these subjects who are also identified as being of levels R2, R3 or R4 in e-ring or

ring games. This leads to the following shares (the numbers in parenthesis give the shares out

of all subjects that have been revealed being of level at most R0 or R1 at least twice, that is

in at least two decisions among all relevant decisions in the 4×4 and the two beauty contest

games (50 subjects)):

E-ring games: 35.4% (38.0%) Ring games: 43.8% (44.9%).

The numbers show that for individuals that have been classified as not having higher-order

beliefs, the non-LOC games, with the exception 1/3-BC games, are significantly more likely

to misclassify those individuals as having higher-order beliefs, than the e-ring and ring games

that are LOC games.

Test 1.2. First, we take subjects identified as being R2, R3 or R4 in each of the non-LOC

games, and look at how many of these subjects are classified as being R0 or R1 by the LOC

games. Second, we take subjects identified as being R2, R3 or R4 in each of the LOC games,

and look at how many of these subjects are classified as being R0 or R1 by the non-LOC

games.

Consider all subjects that are identified as being of level R2, R3 or R4 in the 4×4 and

in the two beauty contest games (respectively, 164, 207 and 118 subjects). For each of these

three populations separately, we calculate the share of individuals who are also identified as

being of level R0 or R1 in the e-ring and ring games. We obtain the following shares (where

the numbers in parenthesis give the shares of subjects that have been revealed as being of level

at most R0 or R1 at least twice in the e-ring and ring games):

4× 4: 20.1% (25.6%) 2/3-BC: 21.3% (31.4%) 1/3-BC: 16.9% (27.1%).

Next, for comparison, consider all subjects that are identified as being of level R2, R3 or R4 in

the e-ring game and then in the ring games (respectively, 139 and 116 subjects). For each of

these two populations separately, we calculate the share of individuals who are also identified

as being of level R0 or R1 in at least two games of the 4×4 and the two beauty contest games.

We obtain the following shares (where the numbers in parenthesis give the shares out of all

subjects revealed as being of level at most R0 or R1 at least twice in the 4×4 and the two

beauty contest games):

E-ring games: 12.2% (13.7%) Ring games: 18.1% (15.8%).

The numbers show that for individuals that have been classified as having higher-order beliefs

by non-LOC games, there are significantly more that are then classified as not having higher-

order beliefs by LOC games than the other way around. Again, the 1/3-BC seems to be an

too small to make statistically significant comparisons.
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exception.

In both tests we observe that games that do not satisfy Property 1 tend to be nosier in the

identification of higher orders of rationality, potentially reducing the external validity of the

identified distribution.

R4 R3 R2

E-ring game 8.3% (10.0% ) 16.7% (18.0%) 35.4% (38.0%)

Ring game 20.8% (22.0%) 25.0% (26.0%) 43.8% (44.0%)

Table 2: Cumulative distribution of higher-order rationality levels for e-ring

and ring games for subjects identified as being of level R0 or R1 in at least two

games of the 4×4 and the beauty contest games (48 subjects) (in parenthesis

for subjects revealed as being of level at most R0 or R1 at least twice in the

4×4 and the two beauty contest games (50 subjects)).

Experimental Evidence for Property 2 (Absence of Framing). Next, we build on the

established empirical relevance of Property 1 to check the importance of requiring absence of

framing (Property 2). Again, we perform two tests.

Test 2.1. We consider all subjects that are identified as being of level R0 or R1 in at least

two games of the 4×4 and the beauty contest games (48 subjects) (or alternatively, revealed

as being of level at most R0 or R1 at least twice in the 4×4 and the two beauty contest

games Such individuals that do not show higher-order beliefs in any of these games have a

higher probability of not having been misidentified. We focus on this particular population

because the strongest effects of framing (from the e-ring and ring games), if present, should

be highlighted within a population that shows otherwise no evidence of higher-order beliefs.

Table 2 presents the cumulative distribution function of the rationality levels as classified by

the e-ring and ring games. We find that the ring games consistently classify subjects in higher

categories than the e-ring games. In fact, as is clear from Table 2, the distribution of levels

identified by the ring games first order stochastically dominates the one identified by the e-ring

games (significant at the 1% level using the Kolmogorov-Smirnov test in both cases).

Test 2.2. We find further evidence of the relevance of Property 2 when comparing treat-

ments in which the ring games and the e-ring games were presented in different orders to

subjects, we find generally higher levels of rationality in the e-ring games when they are

played after having played the ring games (126 subjects), than when played in the opposite

order (103 subjects). We find the average identified level by the e-ring game increases by 9.8%.

Also, the Kolmogorov-Smirnov test is significant at the 1% level.25

25When looking at the levels identified by the ring games, we find slightly lower levels of rationality when
the ring games are played after having played the e-ring games, than when they are played beforehand. The
average level identified by the ring game decreases by 3.5% when the ring games are played after the e-ring
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Both tests suggest that Property 2 reduces misclassification of subjects identified as satis-

fying higher-order rationality.

Finally, we report the empirical correlation between the orders of rationality identified by

the various games and the results of the standardized tests used for admittance to university

in Spain. We find that it is highest for the e-ring games among all the classes of games used.

We view this as potential further evidence that e-ring games, as the only games satisfying both

properties, are less noisy in identifying higher-order rationality. These correlations are:

E-ring games: 0.24 Ring games: 0.12 4× 4: 0.06 2/3-BC: 0.16 1/3-BC: 0.08.

Notice that while, statistically, e-ring games may tendentially outperform the 4×4 and the

beauty contest games, due to the higher number of choices and hence the higher informative

content of the classification, there should be no difference between e-ring games and ring games

in terms of informativeness of the classification as they both have 8 choices.

6 Conclusion

The identification of a reliable distribution of orders of rationality in the population is a

crucial prerequisite for predicting behavior in many applications, including price formation

and oligopolistic competition, mechanism and institutional design or monetary policy. This

identification is a highly problematic exercise. A fundamental issue, addressed here for the

first time, is that standard games used so far do not allow for the observation of behavior

at the different steps of the hierarchy of beliefs and the ones that do, frame individuals into

thinking in higher levels, thereby compromising the very exercise.

This paper tackles this apparent contradiction in a comprehensive way. First, it formalizes

the estimation problem in a probabilistic setting and links the properties of the distribution

of unobservable bounds to the structure of the game. Second, using the language of graphs,

the paper introduces a way of formalizing the payoff dependencies of games that allow for

the axiomatic approach to be used for the first time to formalize the discussion regarding the

estimation of bounds. It then shows that the axioms proposed, under some clearly stated

conditions of the probability space, become necessary for a valid estimation and pin down a

unique class of games: the e-ring games. Finally, the paper tests the properties empirically

and finds evidence that suggests that both properties are indeed relevant in reducing the

estimation error. As a result, e-ring games might constitute a useful starting point for the

study of higher-order rationality.

The introduction of the probabilistic setting and the axiomatic approach in this literature

might be important per se, as mentioned in Section 1. In fact, they enable a more transparent

discussion of which statistical conditions are reasonable for the estimation exercise and what

games.
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features of the game enhance the external validity of the estimation. Statistical conditions and

properties of the game, once formulated explicitly, can be discussed, tested, discarded, and

alternatives can be thought of, thus pushing the discussion in the literature forward in a more

structured way.

The contribution of the paper is to provide a weak possibility result on the identification

of higher-order rationality of individuals, which may pave the way for possibly stronger results

in the following sense. The general problem of game dependent estimation errors, and what

our conditions highlight, is that we need to understand more clearly the relationship between

different games. In fact, our conditions show that games should be similar in terms of the

distribution of noise across games. That is, our results suggest the impossibility of finding a

general distribution, valid for any game and they highlight the need to establish clear classes

of games. This would allow for the estimation of reliable distributions of rationality bounds

within the class but not outside of it. We leave this next step for future research.
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A Proofs

A.1 Lemma 1

Lemma 1. Let G be a game with depth n that satisfies lower-order consistency. Then:

(i) G has at least n distinct player types, of which one has a strictly dominant action.

(ii) G is dominance solvable in exactly n rounds.

Proof. Part (i) follows from the definition of lower-order consistency. To see this notice that,

if G can test for bound k, it can also test for bounds ` = 1, . . . , k − 1, and hence XG contains

player type x` for each ` = 1, . . . , k, where, by definition, x1 has a strictly dominant action.

Part (ii) follows from Definition 2 and from the definition of lower-order consistency.

A.2 Proposition 1

In what follows, for any game G we denote:

êG := min
x∈XG

êx,

and for every player-type x ∈ XG , we denote the depth of x by kx. We now first present a

series of auxiliary lemmata and next, the proof of Proposition 1.

A.2.1 First Auxiliary Result

Lemma 2. Let G a game of depth n with only one player-type of depth n. Then:

eG = êG + ēxn .

Proof. Pick the k ∈ {0, . . . , n} where rxn = k. Then, we know by condition (ii) in Definition

3 that rx = kx for every player-type x where kx ≤ k and rx = k for every player-type x where

kx > k. It follows that r̂x =∞ for every player-type x where kx ≤ k. Then:

eG =

∣∣∣∣min
x∈XG

(êx + ēx)

∣∣∣∣ =

∣∣∣∣ min
x∈XG :kx>k

(êx + ēx)

∣∣∣∣ =

∣∣∣∣ min
x∈XG :kx>k

(êx + rx − r)
∣∣∣∣

=

∣∣∣∣ min
x∈XG :kx>k

(êx + k − r)
∣∣∣∣ =

∣∣∣∣ min
x∈XG :kx>k

êx + (rxn − r)
∣∣∣∣ = min

x∈XG
êx + (rxn − r) = êG + ēxn ,

where the second to last equality relies on the fact that rxn ≥ r.

A.2.2 For the Necessity of Lower-Order Consistency

Lemma 3. Let (Ω,F , P ) be a probability space satisfying conditions 1 and 3 and let G be a

game of depth n that satisfies lower-order consistency. Then, for any game G′ of depth n and
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any ε̂ > 0, the following two hold:

(i) For any k = 0, 1, . . . , n− 1,

P (êG > ε̂ | rxn = k) ≤ P (ê′G′ > ε̂ | r′x′n = k).

(ii) If G′ does not satisfy lower-order consistency, then there exists some k∗ = 0, 1, . . . , n− 1

such that:

P (êG > ε̂ | rxn = k∗) < P (ê′G′ > ε̂ | r′x′n = k∗).

Proof. Fix two games G and G′ of depth n, and pick k = 0, 1, . . . , n− 1 and ε̂ ≥ 0. Then, we

have that:

P (êG > ε̂ | rxn = k)
(1)
= P

([
min
x∈XG

êx > ε̂

] ∣∣∣∣ rxn = k

)

(2)
= P

 ⋂
x∈XG

[êx > ε̂]

∣∣∣∣∣∣ rxn = k


(3)
=

∏
x∈XG :kx>k

P (êx = ε̂ | rxn = k)

(4)
=

n∏
`=k+1

∏
x∈XG :kx=`

P (êx = ε̂ | rxn = k).

Equalities (1) and (4) are immediate; (2) follows from condition (i) of Definition 3 (if rxn(ω) = k

then rx(ω) = kx and hence r̂x(ω) = ∞ for every x with kx ≤ k); (3) follows from part (i) of

Condition 3. Similarly, we obtain that:

P (ê′G′ > ε̂ | r′x′n = k) =
n∏

`=k+1

∏
x∈XG′ :kx=`

P (ê′x′ = ε̂ | r′x′n = k)

=
n∏

`=k+1

∏
x∈XG′ :kx=`

P (êx = ε̂ | rxn = k),

where the second equality follows from part (ii) of Condition 3.26 If both games satisfy lower-

order consistency we have that:

P (êG > ε̂ | rxn = k) =
n∏

`=k+1

P (êx` = ε̂ | rxn = k),

26That is, from the fact that for every x ∈ XG and every x′ ∈ XG′ of the same depth (and higher than k) we
have that P (ê′x′ = ε̂ | r′x′

n
= k) = P (êx = ε̂ | rxn = k)
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P (ê′G′ > ε̂ | r′x′n = k) =
n∏

`=k+1

P (êx` = ε̂ | rxn = k),

and thus, we obtain the inequality in (i) is clear. If only G satisfies lower-order consistency,

then there exist some k∗ = 0, 1, . . . , n − 1 and some ` = k∗ + 1, . . . , n such that there is no

x ∈ XG′ with depth kx = `. Since the opposite cannot happen, we have that:27

n∏
`=k∗+1

P (êx` = ε̂ | rxn = k∗) <
n∏

`=k∗+1

∏
x′∈XG′ :kx′=`

P (ê′x′ = ε̂ | r′x′n = k∗)

and thus, combining the latter with the equalities above, we obtain:

P (êG > ε̂ | rxn = k∗) =

n∏
`=k+1

∏
x∈XG′ :kx=`

P (êx = ε̂ | rxn = k∗)

=
n∏

`=k∗+1

P (êx` = ε̂ | rxn = k∗)

<
n∏

`=k∗+1

∏
x′∈XG′ :kx′=`

P (ê′x′ = ε̂ | r′x′n = k∗)

= P (ê′G′ > ε̂ | r′x′n = k∗),

what allows for concluding the strict inequality in (ii).

A.2.3 For the Necessity of Absence of Framing

Lemma 4. Let (Ω,F , P ) be a probability space satisfying Condition 4 and let G be a game of

depth n that satisfies lower-order consistency and absence of framing. Then, for any game G′

of depth n the following two hold:

(i) For any k = 0, 1, . . . , n− 1 and every ε̄ = 1, 2, . . . , n− k,

P (ēxn = ε̄ | r = k) ≤ P (ē′x′n = ε̄ | r = k).

(ii) If G′ satisfies lower-order consistency but not absence of framing, then there exists some

k∗ = 1, . . . , n such that, for every ε̄ = 1, 2, . . . , n− k∗,

P (ēxn = ε̄ | r = k∗) < P (ē′x′n = ε̄ | r = k∗).

Proof. Let us first make the trivial observation that for a game that satisfies lower-order

consistency, absence of framing and the absence of trivial types are equivalent. Given this, we

27The strict inequality holds due to Condition 1, which implies that P (êx = ε̂ | rxn = k∗) < 1 for any
k∗ = 0, 1, . . . , n− 1 and any x ∈ XG of depth ` ∈ {k∗ + 1, . . . , n}, and every ε̂ > 0.
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know that G does not contain trivial types and thus, for any k ∈ {1, 2, . . . , n − 1} and every

ε̄ = 1, 2, . . . , n− k we have that:

• By part (i) of Condition 4, if G′ contains some trivial player-type of depth ` ≤ n+ 1− k,

then P (ēxn = ε̄ | r = k) < P (ē′x′n = ε̄ | r = k).

• By part (ii) of Condition 4, if G′ contains no trivial player-type of depth ` ≤ n+ 1− k,

then P (ēxn = ε̄ | r = k) = P (ē′x′n = ε̄ | r = k).

And thus, in either case we conclude that the inequality in (i) holds. Similarly, if G′ satisfies

lower-order consistency but not absence of framing, we know that it contains some trivial

player-type, and thus, using part (i) of Condition 4 we conclude that the claim in (ii) here

holds.

A.2.4 Last Auxiliary Result

Lemma 5. Let (Ω,F , P ) be a probability space satisfying Condition 3, let G be a game of depth

n, and let k be in {0, 1, . . . , n}. Then for any player-type x ∈ XG of depth higher than k, and

every ε̂ ≥ 0,

P (êG > ε̂ | rxn = k) < P (êG > ε̂− δ | rxn = k + δ),

for every δ ∈ {1, . . . ,min{ε̂, n− k}}.

Proof. Fix k ∈ {0, 1 . . . , n}, ε̂ ≥ 0 and δ ∈ {1, . . . ,min{ε̂, n− k}}. Then, because of part (i) of

Condition 3 we know that:

P (êG > ε− δ | rxn = k) =
∏

x∈XG :kx>k

P (êx > ε− δ | rxn = k)

=

 ∏
x∈XG :kx>k+δ

P (êx > ε− δ | rxn = k)

 · α, (1)

where:

α :=
∏

x∈XG :kx∈{k+1,...,k+δ}

P (êx > ε− δ | rxn = k) < 1.

Similarly, we also know that:

P (êG > ε− δ | rxn = k + δ) =
∏

x∈XG :kx>k+δ

P (êx > ε− δ | rxn = k + δ). (2)

In addition, we know from part (iii) of Condition 3 that, for any player-type x of depth higher

that k + δ,

P (êx > ε− δ | rxn = k) < P (êx > ε− δ | rxn = k + δ). (3)

38



Combining (1), (2) and (3), we have that:

P (êG > ε− δ | rxn = k) < P (êG > ε− δ | rxn = k + δ),

and hence, the obvious fact that:

P (êG > ε | rxn = k) ≤ P (êG > ε− δ | rxn = k),

completes the proof.

A.2.5 Proof of the Proposition

Proposition 1. Let (Ω,F , P ) be a probability space that satisfies conditions 1, 2, 3 and 4,

and let G and G′ be two games of the same depth. Then, if G satisfies lower-order consistency

and absence of framing and G′ does not, G is more efficient than G′.

Proof. Fix two games G and G′ of depth n, and pick ε ≥ 0. For notational convenience, for

each k = 0, 1, . . . , n− 1, set ε̄(k) := min{ε, n− k}.28 Then, we have that:

P (eG > ε) =

(1)
=

n−1∑
k=0

P (eG > ε, r = k) + P (eG > ε, r ≥ n)

(2)
=

n−1∑
k=0

P (êG + ēxn > ε, r = k) + P (r ≥ n)

(3)
=

n−1∑
k=0

ε̄(k)∑
ε̄=0

P (êG > ε− ε̄, ēxn = ε̄, r = k) + P (r ≥ n)

(4)
=

n−1∑
k=0

ε̄(k)∑
ε̄=0

P (êG > ε− ε̄, ēxn = ε̄, rxn = k + ε̄) + P (r ≥ n)

(5)
=

n−1∑
k=0

ε̄(k)∑
ε̄=0

P (rxn = k + ε̄)P (êG > ε− ε̄, ēxn = ε̄ | rxn = k + ε̄) + P (r ≥ n)

(6)
=

n−1∑
k=0

ε̄(k)∑
ε̄=0

P (rxn = k + ε̄)P (êG > ε− ε̄ | rxn = k + ε̄)P (ēxn = ε̄ | rxn = k + ε̄) + P (r ≥ n)

28The equation that follows clarifies the convenience of this notation. The range of ēxn conditional on r = k
is {0, 1, . . . , n − k}; however, it will become obvious why we want to exclude. w.l.o.g., the cases in which
ε− ēxn < 0.
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(7)
=

n−1∑
k=0

ε̄(k)∑
ε̄=0

P (êG > ε− ε̄ | rxn = k + ε̄)P (ēxn = ε̄, rxn = k + ε̄) + P (r ≥ n)

(8)
=

n−1∑
k=0

ε̄(k)∑
ε̄=0

P (êG > ε− ε̄ | rxn = k + ε̄)P (ēxn = ε̄, r = k) + P (r ≥ n)

(9)
=

n−1∑
k=0

P (r = k)

ε̄(k)∑
ε̄=0

P (êG > ε− ε̄ | rxn = k + ε̄)P (ēxn = ε̄ | r = k) + P (r ≥ n)

Equalities (1), (3), (5), (7), (8) and (9) are immediate; (2) relies on Lemma 2 and condition

(ii) in Definition 4 (to notice that, if r(ω) ≥ n then r̂G(ω) = ∞ and thus, eG(ω) > ε); (4)

follows from the definition of ēxn ; (6) follows immediately from Condition 2. Similarly, we

obtain that:

P (e′G′ > ε) =

n−1∑
k=0

P (r = k)

ε̄(k)∑
ε̄=0

P (ê′G′ > ε− ε̄ | r′x′n = k + ε̄)P (ē′x′n = ε̄ | r = k) + P (r ≥ n).

Now, to simplify the rest of the proof let us denote for every k = 0, 1, . . . , n − 1 and every

ε̄ = 0, 1, . . . , ε̄(k),

q(k, ε, ε̄) := P (êG > ε− ε̄ | rxn = k + ε̄) and p(k, ε̄) := P (ēxn = ε̄ | r = k).

With this notation, P (eG > ε) becomes:

P (eG > ε) =
n−1∑
k=0

P (r = k)

ε̄(k)∑
ε̄=0

q(k, ε, ε̄)p(k, ε̄) + P (r ≥ n)

Now, defining q′(k, ε, ε̄) and p′(k, ε̄) for G′ in analogous terms, we obtain that:

P (eG > ε)− P (e′G′ > ε) =

n−1∑
k=0

P (r = k)

ε̄(k)∑
ε̄=0

(
q(k, ε, ε̄)p(k, ε̄)− q′(k, ε, ε̄)p′(k, ε̄)

)
.

Now:

(A) Since G satisfies lower-order consistency we know from part (i) of Lemma 3 that q(k, ε, ε̄) ≤
q′(k, ε, ε̄) for every k = 0, 1, . . . n− 1 and every ε̄ = 0, 1, . . . , ε̄(k).

(B) Since G satisfies lower-order consistency and absence of framing we know from part (i) of

Lemma 4 that p(k, ε̄) ≤ p′(k, ε̄) for every k = 0, 1, . . . n− 1 and every ε̄ = 1, 2, . . . , ε̄(k).

In consequence, we have that:

ε̄(k)∑
ε̄=0

(q(k, ε, ε̄)p(k, ε̄)− q′(k, ε, ε̄)p′(k, ε̄))
(1)

≤
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(1)

≤
ε̄(k)∑
ε̄=0

q′(k, ε, ε̄)
(
p(k, ε̄)− p′(k, ε̄)

)

=

ε̄(k)∑
ε̄=1

q′(k, ε, ε̄)
(
p(k, ε̄)− p′(k, ε̄)

)
+ q′(k, ε, 0)(p(k, 0)− p′(k, 0))

=

ε̄(k)∑
ε̄=1

q′(k, ε, ε̄)
(
p(k, ε̄)− p′(k, ε̄)

)
− q′(k, ε, 0)

ε̄(k)∑
ε̄=1

(
p(k, ε̄)− p′(k, ε̄)

)

=

ε̄(k)∑
ε̄=1

(
q′(k, ε, ε̄)− q′(k, ε, 0)

) (
p(k, ε̄)− p′(k, ε̄)

) (2)

≤ 0,

for every k = 0, 1, . . . n − 1, where inequality (1) follows from (A), and inequality (2) follows

from (B) and Lemma 5.29 Then:

(a) If G′ does not satisfy lower-order consistency then we know from part (ii) of Lemma 3

that that there exists some k∗ = 0, 1, . . . , n− 1 such that q(k∗, ε, ε̄) < q′(k∗, ε, ε̄).

(b) If G′ satisfies lower-order consistency but not satisfy absence of framing then we know

from part (ii) of Lemma 4 that that there exists some k∗ = 0, 1, . . . , n − 1 such that

p(k∗, ε̄) < p′(k∗, ε̄) for every ε̄ = 1, 2, . . . , ε̄(k∗).

Hence, in either case (the inequality in (1) is strict if (a), and the one in (2) is strict if (b)),

we conclude that:
ε̄(k∗)∑
ε̄=0

(
q(k∗, ε, ε̄)p(k∗, ε̄)− q′(k∗, ε, ε̄)p′(k∗, ε̄)

)
< 0,

and thus, the proof is complete:30

P (eG > ε)− P (e′G′ > ε) =

n−1∑
k=0

P (r = k)

ε̄(k)∑
ε̄=0

(
q(k, ε, ε̄)p(k, ε̄)− q′(k, ε, ε̄)p′(k, ε̄)

)
< 0.

A.3 Proposition 2

Proposition 2. Let G be a game. Then, G is simplest within the class of games of depth 4

and satisfies lower-order consistency and absence of framing if and only if G is a dominance

solvable e-ring game of depth 4 with two actions per player.

Proof. The ‘if’ part is immediate (simply notice that such e-ring games have a graph as the

one depicted on the left of Figure 4 and are clearly minimal) so we focus on the ‘only if’ one.

Lemma 1 implies that G is dominance solvable, contains player types x1, x2, x3 and x4 and has

29To apply the lemma notice that, as ε̄(k) = min{ε, n− k}, it holds that ε̄ ∈ {0, 1, . . . ,min{ε, n− k}}.
30The strict positiveness is guaranteed by Condition 1, which implies that P (r = k∗) > 0.
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a set of links containing (x4, x3) and (x2, x1). Also, by definition, there is no link starting from

x1, and minimality allows for excluding the presence of further player types. We distinguish

now two cases:

• Suppose that G does not include link (x3, x2). Then, as no link departs form x1, it is not

possible to have a path of length 3 that starts at x4. Thus, since G is assumed to satisfy

absence of framing, this case can be excluded.

• Suppose then that G contains link (x3, x2). Then, minimality ensures that there are only

two players, so that x1 and x3 must belong to one player and x2 and x4, to the other—the

directed links whose existence we previously concluded precludes any other configuration.

This excludes the presence of links (x3, x1), (x2, x4) and (x4, x2). Given this, absence of

framing implies the presence of links (x3, x4) and (x2, x3). Finally, minimality excludes

the presence of link (x4, x1).

We are thus left with the graph depicted on the left of Figure 4, which corresponds to the

graph of a dominance solvable e-ring game of depth 4.
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